Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain

Paresh D. Patel; Juan F. Lopez; David M. Lyons; Sharon Burke; Melissa Wallace; Alan F. Schatzberg
Journal of Psychiatric Research. 2000; 34:383-392.

Abstract

Corticosteroids have been implicated in hippocampal atrophy in patients with severe psychiatric disorders, but little is known about receptor expression for corticosteroids in human or nonhuman primate brain. Both the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) were surveyed in this study of squirrel monkey brain using in situ hybridization histochemistry. Regions of high GR mRNA levels included CA1 and CA2 of hippocampus, dentate gyrus, paraventricular hypothalamus, lateral geniculate, lateral>medial amygdala, and cerebellum. Western analysis con®rmed that GR immunoreactivity in squirrel monkey brain tissue most likely reflects the alpha isoform. Regions of high MR mRNA levels included all hippocampal pyramidal cell fields, dentate gyrus granule cell layer, lateral septum, medial>lateral amygdala, and to a lesser extent, cerebellum. Low levels of MR were also expressed in caudate and putamen. Receptor expression for corticosteroids in deep brain structures and the hippocampal formation was similar to that previously reported in rodents, but GR and MR mRNA were expressed at higher levels in squirrel monkey cerebral cortex. GR expression was evident in all cortical layers, particularly the pyramidal cell-rich layers II/III and V. MR expression was restricted to the more super®cial cortical layers, and was only moderately represented in layer V. Laminar patterns were apparent in all regions of cortex for GR expression in squirrel monkeys, but low MR mRNA levels were found in dorsomedial prefrontal cortex (PFC). Different subregional distributions and distinctive laminar patterns suggest specialized functions or coordinated interactions between GR and MR mediated functions in primate PFC.