The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior

GarcĂ­a-Fuster MJ, Parks GS, Clinton SM, Watson SJ, Akil H, Civelli O
Eur Neuropsychopharmacol. 2012; 22(8):607-13.


Selective breeding for divergence in locomotion in a novel environment (bHR, bred High-Responder; bLR, bred Low-Responder) correlates with stress-reactivity, spontaneous anxiety-like behaviors and predicts vulnerability in a rodent model of depression. Identifying genetic factors that may account for such vulnerability are key determinants not only for the illness outcome but also for the development of better-tailored treatment options. Melanin-concentrating hormone (MCH) is a neuropeptide that exhibits some of the hallmarks of a regulator of affective states. The aim of this study was to ascertain the role of the MCH system in depression-like behaviors in bHR vs. bLR rats. bLR rats showed a 44% increase in hypothalamic pMCH mRNA and a 14% decrease in hippocampal CA1 MCH1R mRNA when compared to bHR rats. Interestingly, the amount of time that rats spent immobile in the FST (depressive-like behavior) correlated positively with the amount of hypothalamic pMCH mRNA and negatively with that of hippocampal CA1 MCH1R. The results indicate that the bLR-bHR is a useful rat model to investigate individual basal genetic differences that participate in the monitoring of emotional responsiveness (i.e., depression- and anxiety-like behaviors). They also point to the MCH system (i.e., chronically higher pMCH expression and consequently receptor down-regulation) as a candidate biomarker for the severity of depressive-like behavior. The data indicate that MCH1R participates in the modulation of depression-like behavior through a process that involves the CA1 region of the hippocampus, supporting the possible use of MCH1R antagonists in the treatment of depression.